[11:00-11:30] Beat notes and periodic signals

When two sinusoidal signals $x_1(t) = A_1 \cos(\omega_1 t + \phi_1)$ and $x_2(t) = A_2 \cos(\omega_2 t + \phi_2)$ are multiplied together, the result contains the sum and difference frequencies:

$$x_3(t) = A_{\text{sum}} \cos((\omega_1 + \omega_2)t + \phi_{\text{sum}}) + A_{\text{diff}} \cos((\omega_2 - \omega_1)t + \phi_{\text{diff}})$$

Example:

$$\begin{split} x(t) &= \cos(2\pi 10t)\sin(2\pi 1000t) \\ &= \left(\frac{e^{j2\pi 10t} + e^{-j2\pi 10t}}{2}\right) \left(\frac{e^{j2\pi 1000t} - e^{-j2\pi 1000t}}{2j}\right) \\ &= \frac{1}{4j} \left(e^{j2\pi 1010t} - e^{-j2\pi 990t} + e^{j2\pi 990t} - e^{-j2\pi 1010t}\right) \\ &= \frac{1}{2}\sin 2\pi 1010t + \frac{1}{2}\sin 2\pi 990t \\ &= \frac{1}{2}\cos\left(2\pi 1010t - \frac{\pi}{2}\right) + \frac{1}{2}\cos\left(2\pi 990t - \frac{\pi}{2}\right) \end{split}$$

Relationship between sinusoids and complex exponentials

$e^{j\theta} = \cos\theta + j\sin\theta$	$e^{-j\theta} = \cos\theta - j\sin\theta$
$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$	$\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$

A signal x(t) is periodic with period T if x(t - nT) = x(t) for any integer n.

A periodic signal can have multiple periods. The smallest positive period is the fundamental period. The fundamental frequency is f_0 is computed as $1/T_0$

[11:35-12:00] Fourier series

Any periodic signal x(t) can be synthesized by adding complex exponentials with harmonic frequencies

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$$

where f_0 is the fundamental frequency.

Notice that

$$e^{j2\pi k f_0 t} = \cos(2\pi k f_0 t) + j\sin(2\pi k f_0 t)$$

Thus, the real component is periodic, the imaginary component is periodic, and both have the same periodicity.

A special case occurs with conjugate symmetric amplitudes $a_{-k} = a_k^*$, where $a_k = \frac{1}{2}A_k e^{j\phi_k}$, which leads to real-valued x(t)

$$x(t) = A_0 + \sum_{k=1}^{\infty} A_k \cos(2\pi k f_0 t + \phi_k)$$

[12:00-12:50] Fourier series analysis and synthesis formulae

The Fourier series coefficients a_k can be computed from a periodic signal x(t) by integration over one fundamental period T_0 :

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j2\pi k f_0 t} dt$$
 (Fourier series analysis)

A periodic signal can be synthesized by adding together complex exponentials weighted by the Fourier series coefficients a_k :

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$$
 (Fourier series synthesis)

Doc cam

	5/de 3-2	9/9/2025
	ejo = coso + isno	
	$e^{j\theta} = \cos \theta + j \sin \theta$ $e^{-j\theta} = \cos(-\theta) + j \sin(\theta)$ $= \cos \theta - j \sin \theta$	(- 0)
	7	
	C=5 D	Sind
	0	. 0
٠.		
	Even symmetric , 0	dd (anti) symmetric
	about the origin.	about the origin
	$e^{j\theta} + e^{-j\theta} = (\cos \theta + j\sin \theta)$ $e^{j\theta} + e^{-j\theta} = 2\cos \theta$	+ (cos 0-jsno)
	$e^{j\theta} - e^{-j\theta} = (\cos \theta + i\sin \theta)$	A) - ((A) - (S) A)
	$e^{j\theta} - e^{-j\theta} = (\cos \theta + j\sin \theta)$ $e^{j\theta} - e^{-j\theta} = 2j\sin \theta$	$\Rightarrow \sin\theta = \frac{e^{j\theta} - e^{j\theta}}{2i}$

51, de 3-7 9/9/2025	
Synthesis $X(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$	
kth Harmonic is fie = K fo	
$X(t) = q_0 + \sum_{k=-\infty}^{\infty} a_k e^{\int 2\pi k f_0 t}$	
K F O	
e jatk fot = cos(2 + kfot) + jsin(2 + for e) Penodic signal	<u>(</u>)
- real component is periodic - imaginary component is periodic component	
- both have the same perodicity	
Special case. Let k=2.7 k=-2.	
Special case. Let $k=2.7$ $k=-2$. Select only $= \int_{-2}^{2} 2\pi(-2)f_{0}t$ $= \int_{-2}^{2} 2\pi(2)f_{0}t$ $= \int_{-2}^{2} 2\pi(2)f_{0}t$ $= \int_{-2}^{2} 2\pi(2)f_{0}t$ $= \int_{-2}^{2} 2\pi(2)f_{0}t$	
It $a_2 = a_2$ (conjugate symmetry)	
gues this term Conjugate this term	

5/, de 3-7 9/9/2025 work ofter / Let az=rzeioz in pola-form 92= rae jea (rae jea) e jam (-2) fit + (re jea) e jam/a) fit $r_2 e^{-j2\pi(a)f_0t-j\theta_2} + r_2 e^{j2\pi(a)f_0t+j\theta_2} =$ (2 e) (2 = 1 (2) fot + 02) + (2 e) (2 = (2) fot + 02) (2 2 cos (aπ/2) fot + O2)

